The biologization of technology is becoming an increasingly important topic in materials and production research. Thanks to outstanding fundamental research, Germany holds a prominent position among countries that are devoting themselves to this field of study. The Federal Ministry of Education and Research is specifically promoting the transfer of insights from such research to sustainable industrial uses.
One of these efforts is the BEST project, in which experts from CENIT and Hamburg TU are examining support structures in additive manufacturing. As it turns out, they can take inspiration from mother nature’s blueprints and methods.
Optimization pressures in generating support structures for 3D printing
In additive manufacturing involving powder-bed laser beam fusion of metals (PBF-LB/M), complex geometries can only be generated if the right support structures are present. Currently available support structures are not ideal for the purpose. In one-off and small-batch production of components, this leads either to oversizing of the support structures or to printing errors. Additionally, excessive material consumption raises costs and prolongs printing times. Particularly for small and medium enterprises, this can present problems.